Small defects reconstruction in waveguides from multifrequency one-side scattering data

نویسندگان

چکیده

<p style='text-indent:20px;'>Localization and reconstruction of small defects in acoustic or electromagnetic waveguides is crucial interest nondestructive evaluation structures. The aim this work to present a new multi-frequency inversion method reconstruct 2D waveguide. Given one-side wave field measurements propagating modes, we use Born approximation provide <inline-formula><tex-math id="M1">\begin{document}$ \text{L}^2 $\end{document}</tex-math></inline-formula>-stable three types defects: local perturbation inside the waveguide, bending localized defect geometry This based on mode-by-mode spacial Fourier from available partial data domain. Indeed, data, some high low spatial frequency information are missing. We overcome issue using both compact support hypothesis minimal smoothness defects. also suitable numerical for efficient such discuss its applications limits.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding small inhomogeneities from scattering data

A new method for finding small inhomogeneities from surface scattering data is proposed and mathematically justified. The method allows one to find small holes and cracks in metallic and other objects from the observation of the acoustic field scattered by the objects.

متن کامل

Scattering in Twisted Waveguides

We consider a twisted quantum waveguide, i.e., a domain of the form Ωθ := rθω×R where ω ⊂ R 2 is a bounded domain, and rθ = rθ(x3) is a rotation by the angle θ(x3) depending on the longitudinal variable x3. We investigate the nature of the essential spectrum of the Dirichlet Laplacian Hθ, self-adjoint in L (Ωθ), and consider related scattering problems. First, we show that if the derivative of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems and Imaging

سال: 2022

ISSN: ['1930-8345', '1930-8337']

DOI: https://doi.org/10.3934/ipi.2021056